Теория групп 9 — Комплексные числа и группа U(1)
Открытие комплексных чисел многими считается моментом рождения современной математики. До этого считалось, что всю математику исследовали вдоль и поперек еще
Читать далееОткрытие комплексных чисел многими считается моментом рождения современной математики. До этого считалось, что всю математику исследовали вдоль и поперек еще
Читать далееЭлементы групп Ли всегда можно найти матричным экспоненцированием генераторов групп Ли. Сами элементы можно рассматривать как операторы, действующие на векторы.
Читать далееПо аналогии с группой поворотов на плоскости SO(2) можно построить группу поворотов в трехмерном пространстве. Она называется SO(3) – специальная
Читать далееВернемся к группе SO(2) – группе поворотов на плоскости. Как мы видели, элементы группы можно представить квадратными матрицами. Зная угол
Читать далееВ теории групп очень много интересных теорем и десятки терминов даже в рамках обычных дискретных групп: нормальная подгруппа, классы, факторгруппа
Читать далееМы видели, что группа является довольно абстрактным математическим объектом. Операцией группы может быть что угодно: обычное умножение или сложение, поворот,
Читать далееПриведем еще раз таблицу умножения группы С3 – группы поворотов на 120 и 240°, оставляющей инвариантным равносторонний треугольник. Однако можно
Читать далееГруппы описывают симметрию объекта. Но как мы видели, определение группы довольно абстрактно и не привязано к геометрии. Под определение группы
Читать далееСложно переоценить значение теории групп для современных естественных наук. Приведем лишь один пример из физики. Оказывается каждому типу фундаментального взаимодействия
Читать далееРоль математики в физике сложно переоценить. Известна цитата Галилео Галилея «Математика — это язык, на котором написана книга Природы». Но
Читать далее