Квантовые вычисления
В представлении Шредингера изменение кубита во времени под действием унитарных операторов удобно представить графически. Данный подход широко используется в области квантовых вычислений. Так называемые квантовые цепи служат аналогом графического представления электрических цепей. Они также строятся из набора вентилей или гейтов по аналогии с цифровыми вентилями «И», «ИЛИ», «НЕ», триггерами, регистрами, сумматорами и так далее.
Пусть у нас имеется кубит в базисном состоянии «0». Опять же мы его можем представить вектор-столбцом (1 0). Если подать его на вход гейта, назовем его Х, то вектор состояния изменится. Данный вентиль представляется матрицей Паули сигма-х. Да, матрицы Паули помимо того, что они эрмитовы, они также еще и унитарны. Не все эрмитовы матрицы унитарны, но матрицы Паули именно такие.
Итак, умножением X-матрицы Паули на исходный вектор получим вектор-столбец (0 1). Он является вторым базисным кет-вектором |1>. То есть данный гейт перевел 0 в единицу. Данный вентиль также называют NOT, поскольку он выполняет отрицание, инверсию. Действительно, если далее поставить еще один такой гейт, то мы вернемся к состоянию ноль.
В отличие от классических бит, кубит может находиться в суперпозиции базисных векторов. Следующий вентиль называется гейт Адамара и представляется следующей унитарной матрицей. Он переводит состояние ноль в суперпозицию |0>+|1>.
Заметьте, что при действии этой матрицы на кет-вектор |1>, она переводит его в |0>-|1>.
С помощью этих двух вентилей мы можем графически представить рассмотренный в предыдущем видео эксперимент с интерферометром Маха-Цендера. Приведенные нами матрицы идентичны рассматриваемым там операторам эволюции. Прохождению фотоном полупрозрачного зеркала соответствует гейт Адамара. Зеркалу вентиль инверсии X. Второе полупрозрачное зеркало также представляется вентилем Адамара. Первый гейт переводит кубит в суперпозицию, второй ничего не делает с получившимся состоянием, а третий переводит суперпозицию обратно в базисный вектор.
Двухкубитные состояния графически представляются добавлением еще одной горизонтальной линии. Сейчас исходный вектор находится в состоянии |00>, которое равно тензорному произведению соответствующих однокубитных векторов. Он представляется вектор-столбцом с четырьмя компонентами.
Можно, например, поставить гейт Адамара на каждый кубит. Фактически это означает, что на исходный вектор надо подействовать тензорным произведением двух матриц Адамара. Мы имеем матрицу 4х4, умножаемую на четырехкомпонентный вектор-столбец. Результатом также будет четырехкомпонентный вектор-столбец.
Однако не каждую унитарную матрицу 4х4 можно разложить на тензорное произведение матриц 2х2. Примером может служить распространенный гейт CNOT – контролируемое отрицание. Он должен применяться сразу ко всему вектору двухкубитного состояния. Обычно его обозначают такими двумя кружочками.
Наиболее общий двухкубитный вектор состояния описывается суперпозицией четырех базисных векторов. Поэтому для его описания необходимы 4 комплексных числа – амплитуды вероятности.
Для трехкубитного вектора суперпозиция будет состоять из 23, то есть восьми слагаемых. Унитарные операторы, действующие на такой восьмикомпонентный вектор-столбец представляются матрицами 8х8. Именно поэтому в случае квантовых вычислений моделирование на классическом компьютере становится невозможным уже при небольшом количестве кубит.
Так для оперирования стокубитным состоянием необходимо хранить 2100 комплексных чисел только для описания самого вектора. 2100 это уже больше количества элементарных частиц в наблюдаемой части Вселенной. Именно поэтому человечеству нужен аппаратный квантовый компьютер, а не его классический имитатор.
В интернете можно найти симуляторы квантовых цепей и поэкспериментировать с ними. Вот один из них, называется quirk. На выходе он показывает вероятность при измерении кубита обнаружить единицу. Также сферу Блоха, графически отображающую кубит точкой на сфере. И графическое отображения амплитуд вероятностей — два комплексных числа для одного кубита, четыре для двухкубитного состояния.
Изначально двухкубитный вектор у нас находится в состоянии базисного вектора |00>. То есть соответствующая амплитуда вероятности равна единице, а три другие нулю. Но в общем случае все четыре амплитуды ненулевые. Поставим для наглядности, какие-нибудь гейты, матрицы которых сами меняются со временем. Ну и, например, CNOT гейт. Видим, что все четыре амплитуды вероятности меняют свое значение.
Давайте соберем цепь, соответствующую нашему опыту с интерферометром Маха-Цендера. Поставим гейт Адамара. Вероятность в результате измерения получить единицу стала 50%. Сами амплитуды вероятности стали 0.707, то есть для нуля и для единицы.
Поставим NOT-гейт, то есть матрицу Паули Х. Ничего не поменялось. Второй вентиль Адамара вернул вектор состояния в исходный базисный вектор. Заметьте, что при переходе к трехкубитному вектору, амплитуд становится уже восемь. Для четырехкубитного 16. Ну и так далее. Данный симулятор может работать максимум с 16-тикубитным состоянием. Для этого он использует как минимум 216, то есть 64кБ памяти. Для 32 кубит надо уже минимум 4Гб памяти. Требуемые ресурсы растут очень быстро. В данном симуляторе есть и уже собранные схемы популярных алгоритмов. Вот, например, цепь для проверки неравенств Белла, которые мы рассматривали в 26 и 27 частях.
Не следует однако представлять себе квантовый компьютер как аналог классического, но с экспоненциально большими вычислительными мощностями. Как часто говорят в научпопе – встроенный квантовый параллелизм. Действительно, существуют алгоритмы, позволяющие решить некоторые задачи на квантовом компьютере за приемлемое время, тогда как на классическом понадобились бы миллиарды лет. Но эти задачи очень специфичны, например, взятие дискретного логарифма от больших чисел или разложение больших чисел на сомножители.
То есть квантовый компьютер не всегда намного быстрее классического. Скорее его можно рассматривать как специализированный процессор для узкого круга задач. Те же самые операции с матрицами или моделирование квантовых явлений, например, для задач химии.
Но кто знает как будет развиваться данная область когда технология дойдет до серийного производства дешевых многокубитных квантовых процессоров.
http://algassert.com/quirk