Производная и оператор дифференцирования

Ноябрь 16, 2016

Значение дифференциального и интегрального исчислений сложно переоценить. Фактически современная наука и началась с открытия Ньютоном законов механики и разработки им же соответствующего математического аппарата для анализа следствий этих законов. С тех пор математика была и остается тесно переплетенной с физикой. Иногда для физики используется разработанный математиками аппарат, как в случае с общей теорией относительности Эйнштейна. Иногда физики из своих соображений приходят к новым математическим структурам, например, так было с обобщенными функциями, первую из которых ввел Дирак для нужд квантовой механики.

Производная и интеграл основаны на понятиях о бесконечно малых и возможности деления отрезка до бесконечности. С точки зрения физики существование минимальной длины противоречит теории относительности, ведь разные наблюдатели увидят разную длину. Так же  есть веские основания полагать, что деление отрезка до бесконечности тоже невозможно, поскольку понятие длины теряет свой смысл на малых расстояниях (порядка \( \displaystyle 10^{-35}\)м.). Несмотря на это вся современная наука (в том числе квантовая механика и теория струн) пропитана дифференциальным исчислением. Даже дискретные результаты типа квантования энергетических уровней атомов получаются из рассмотрения непрерывных функций и дифференциальных уравнений.

Производная функции в какой-либо точке по определению это отношение интервала \( \displaystyle \Delta y\) к интервалу \( \displaystyle \Delta x\) в окрестности этой точки, когда длины этих интервалов стремятся к нулю. На рисунке для примера показаны две точки с соответствующими интервалами.
derivative1
Хотя сами интервалы в пределе бесконечно малы, их отношение в общем случае имеет конечную величину:

\( \displaystyle f'(x)=\frac{dy}{dx}=\frac{\Delta y}{\Delta x}\) при \( \Delta x\rightarrow 0\)

где через \( \displaystyle dx\) и \( \displaystyle dy\) обозначают дифференциалы (difference — разность), то есть те самые бесконечномалые интервалы — разность декартовых координат текущей и следующей точек.

В научной литературе обозначение производной штрихами практически не используется, а запись в виде отношения дифференциалов общепринята. По сути это и есть определение производной.

Из рисунка видно, что даже при одинаковом \( \displaystyle \Delta x\) соответствующая величина \( \displaystyle \Delta y\) будет разной. Каждой точке непрерывной функции \( \displaystyle f(x)\) можно сопоставить число — производную функции в этой точке. Совокупность этих точек тоже будет непрерывной функцией — производной исходной функции.

Физическим смыслом производной является скорость изменения исходной функции. Достаточно взглянуть на рисунок выше чтобы понять. В районе первой точки функция быстро меняется. Производная будет иметь большую величину потому что \( \displaystyle \Delta y\) большое. И она будет отрицательной, так как \( \displaystyle y(x_{1}+\Delta x)<y(x_{1})\) и их разница \( \displaystyle \Delta y = y(x_{1}+\Delta x)-y(x_{1})\) будет отрицательной. Для второй точки, где функция почти не меняется, производная мала так как \( \displaystyle \Delta y\) мало. Если функция вообще не меняется (постоянна — constant — константа), то производная равна нулю, т.к.  \( \displaystyle \Delta y=0\). Если функция идет «вверх» — производная положительна. Если «вниз» — отрицательна. Понятно, что в точках перехода из «вверх» в «вниз» производная будет равна нулю. То есть в точках экстремума (максимум или минимум) исходной функции производная равна нулю.

Производная функции в точке также связана с касательной к этой точке. Если провести через точки \( \displaystyle y(x)\) и \( \displaystyle y(x+\Delta x)\) прямую, то она будет касательной в пределе \( \Delta x\rightarrow 0\).
tangent_animation
Для элементарных функций их производные можно найти прямо из определения. Так, например, для функции \( \displaystyle y(x)= x^{2}\) производная равна:

\( \displaystyle \frac{\Delta y}{\Delta x}=\frac{(x+\Delta x)^{2}-x^2}{\Delta x}=\) \( \displaystyle \frac{x^2+2x\cdot \Delta x +\Delta x ^{2}-x^2}{\Delta x}=\) \( \displaystyle 2x+\Delta x=2x\) при \( \displaystyle \Delta x\rightarrow 0\)

В реальной жизни, при численных вычислениях на компьютере, к пределу \( \displaystyle \Delta x\rightarrow 0\) вообще не переходят. Скажем, с микрофона поступает аналоговый сигнал \( \displaystyle f(t)\), который необходимо оцифровать с частотой \( \displaystyle 1/\Delta t\)  и произвести цифровую обработку в которой как раз и используются производные. Сигнал (функция) разбивается на конечное число точек (дискретизация):

derivative2

Декартовы y-координаты этой дискретной функции можно записать в вектор-столбец:

\( \displaystyle f(t)=\begin{pmatrix}
y_{1}\\
y_{2}\\
y_{3}\\
…\\
y_{n}
\end{pmatrix}\)

А взятие производной можно записать в виде умножения матриц:

\( \displaystyle \frac{d}{dt}f(t)=\) \( \displaystyle \frac{1}{\Delta t}\begin{pmatrix}
-1&1 &0 &… &0 \\
0&-1 &1 &… &0 \\
0&0 &-1 &… &0 \\
…&… &… &… &…\\
0& 0& 0& …&1
\end{pmatrix}\begin{pmatrix}
y_{1}\\
y_{2}\\
y_{3}\\
…\\
y_{n}
\end{pmatrix}=\) \( \displaystyle \frac{1}{\Delta t}\begin{pmatrix}
y_{2}-y_{1}\\
y_{3}-y_{2}\\
y_{4}-y_{3}\\
…\\
y_{n}-y_{n-1}
\end{pmatrix}\)

Кажется громоздко, но смысл прост. Это просто произведение квадратной матрицы на вектор-столбец (исходная функция), которое дает другой вектор-столбец (производная функция). То есть получившийся вектор-столбец как раз будет являться аппроксимацией производной исходной функции. Проверьте, что умножая приведенную матрицу по стандартному правилу «строка на столбец» мы получим вектор, состоящий из разниц значений функции в соседних точках, например: \( \displaystyle \Delta y_{12}=y_{2}-y_{1}\) и т.п., что по определению и есть производная (если поделить на \( \displaystyle \Delta t\)). Это еще одна наглядная демонстрация откуда пошло название дифференциал (разность по-русски), достаточно посмотреть на вектор-столбец результата.

Заметьте, что мы свели операцию взятия производной к простому умножению матриц. Если вектор-столбец является аппроксимацией функции, то приведенная матрица (деленная на \( \displaystyle \Delta t\)) — это аппроксимация самого оператора дифференцирования \( \displaystyle \frac{d}{dt}\).

То есть при \( \displaystyle \Delta t \rightarrow 0\) матрица и вектор-столбец будут бесконечномерными и мы перейдем от аппроксимации к действительным величинам: функциям и операторам над ними. То есть оператор и матрица фактически одно и тоже в нашем контексте. Кстати, матрицами можно представлять и более простые операции.

Одной из точек зрения на процесс взятия производной (дифференцирования) является взгляд с позиции линейных операторов. Оператор (operator — выполняющий операцию) это то, что действует на функцию в результате чего получается другая функция. По прямой аналогии примера с матрицами, алгебраически можно записать:

\( \displaystyle \hat{D}f(t)=f'(t)\)

где за \( \displaystyle \hat{D}\) обозначен оператор дифференцирования \( \displaystyle \frac{d}{dt}\).

Читать следует так: оператор \( \displaystyle \hat{D}\) действует на исходную функцию \( \displaystyle f \) в результате чего получается другая функция \( \displaystyle f’\). Действие оператора можно представить графически  как изменение сигнала неким преобразователем:
d_operator
Поскольку другие операторы, в том числе и элементарные (сложение, умножение), можно записать в подобном графическом виде, данная парадигма позволяет наглядно отображать дифференциальные уравнения в виде схем и производить их численный анализ на компьютере. Известный пример реализации — Simulink в составе MATLAB.

Добавить комментарий