Уравнения Эйнштейна

Октябрь 10, 2017

Десять лет понадобилось Эйнштейну чтобы обобщить специальную теорию относительности (1905 г.) до общей теории относительности (1916 г.). Принцип эквивалентности позволил осознать, что гравитация как-то связана с искривлением самого пространства-времени. Кульминацией усилий по точной количественной формулировке данного факта являются уравнения Эйнштейна:

\( \displaystyle R_{\mu \nu}-\frac{1}{2}Rg_{\mu \nu}=\frac{8\pi G}{c^{4}}T_{\mu \nu}\)

Они записаны с помощью математики, никогда прежде не появлявшейся в уравнениях физики — Римановой геометрии. Буквы с индексами есть не что иное как тензоры: \( \displaystyle R_{\mu \nu}\) — тензор Риччи, \( \displaystyle g_{\mu \nu}\) — метрический тензор, \( \displaystyle T_{\mu \nu}\) — тензор энергии-импульса.  Само тензорное исчисление появилось всего несколькими годами ранее теории относительности.

Индексы \( \displaystyle\mu \) и  \( \displaystyle \nu\) в уравнениях Эйнштейна могут принимать значения от единицы до четырех, соответственно тензоры можно представить матрицами 4х4. Поскольку они симметричны относительно диагонали, независимы друг от друга оказываются только десять компонент. Таким образом, в развернутом виде имеем систему из десяти нелинейных дифференциальных уравнений — уравнений Эйнштейна.

Задачей решения уравнений Эйнштейна является нахождение явного вида метрического тензора \( \displaystyle g_{\mu \nu}\), полностью характеризующего геометрию пространства-времени. Исходными данными являются тензор энергии-импульса \( \displaystyle T_{\mu \nu}\)  и начальные/граничные условия. Тензор Риччи \( \displaystyle R_{\mu \nu}\) и скалярная кривизна Гаусса \( \displaystyle R\) являются функциями метрического тензора и его производных и характеризуют кривизну пространства-времени. Концептуально уравнения Эйнштейна можно представить как:

геометрия (левая часть) = энергия (правая часть)

Правая часть уравнений Эйнштейна это начальные условия в виде распределения масс (помним, \( \displaystyle E=mc^{2}\)), а левая это чисто геометрические величины. То есть уравнения говорят, что масса (энергия) влияет на геометрию пространства-времени.

Искривленная геометрия в свою очередь определяет траектории движения материальных тел. То есть согласно Эйнштейну — гравитация это и есть пространство-время. Просто оно в отличие от Ньютоновской теории не является статическим неизменным объектом, а может деформироваться, искривляться.

Метрический тензор — решение уравнений Эйнштейна — в общем случае разный в разных точках пространства, то есть является функцией координат. По-сути само пространство-время становится динамическим объектом (полем), аналогично другим физическим величинам типа электромагнитного поля.

Внешне уравнения Эйнштейна совсем не похожи на закон всемирного тяготения Ньютона:

\( \displaystyle F=G\frac{mM}{r^2}\)

Но в приближении малых масс и скоростей они повторяют результаты Ньютоновской теории. Из-за множества тензорных компонент аналитические вычисления крайне запутаны, благо сейчас все моделирование можно производить на компьютере.

В рамках ОТО существуют эффекты отсутствующие в Ньютоновской гравитации, например, увлечение систем отсчета вблизи вращающихся массивных тел или недавно экспериментально обнаруженные гравитационные волны.

Гравитация остается единственным полем для которого так и не построена соответствующая квантовая теория. Даже для кварков (составляющих нейтронов и протонов), теоретически предсказанных только в 1960-х, уже давно построена квантовая теория поля.

Это объясняется тем, что все физические величины обычно выражаются в виде функций от пространственных координат и времени \( \displaystyle x=f(t)\). Что делать когда само пространство  \( \displaystyle x\) и время  \( \displaystyle t\) теряют классический смысл? По-сути стоит задача построить квантовую теорию самого пространства-времени. Наивные подходы, вводящие минимальную длину и минимальный промежуток времени, несостоятельны вследствие относительности этих величин (изменении при преобразованиях Лоренца).

Среди физиков бытует мнение, что квантовая механика более тесно связана с гравитацией чем предполагалось ранее и их объединение приведет к качественно новой теории.

Уравнения Эйнштейна: 6 комментариев

  1. Ольга

    Одним из существенных свойств уравнений Эйнштейна является их нелинейность , приводящая к невозможности использования при их решении принципа суперпозиции .

  2. Джасмин

    Сначала уравнения Эйнштейна решались приближённо, в частности, из них были выведены как классическая теория Ньютона , так и поправки к ней. Первые точные решения были получены Шварцшильдом для центрально-симметричного случая. Ряд решений был вскоре выведен в рамках релятивистской космологии .

    1. LightCone Автор записи

      Причем точное решение было получено Шварцшильдом всего через месяц после публикации ОТО Эйнштейном, чего он сам не ожидал))

  3. Titicage

    This design is steller! You certainly know how to keep a reader entertained. Between your wit and your videos, I was almost moved to start my own blog (well, almost…HaHa!) Great job. I really loved what you had to say, and more than that, how you presented it. Too cool!

  4. Pashenko-Ecolog

    нелинейность и граничные условия — вот и идут червоточины — простота ещё впереди

Добавить комментарий